One intriguing instance of a cubic equation is x"x"x is equal to 2022, where the power of x is raised to the 3rd degree, forming a polynomial equation. If f (x) = 22x 22x +2,x ∈ z, then f (1 2023) +... + f (2022 2023) +... + f (2022 2023) is equal to Answer:x=18Explanation:f (x)= (x)+ (x+13)+ (x+23)x=x+x+13+x+23x=x+x+x+13+23x=3x+363x-x=362x=36x=36/2x=18 If f (x)= (22 x/22 x+2), x ∈ R, then f ( (1/2023))+f ( (2/2023))+.....+f ( (2022/2023)) is equal to